IMPLEMENTATION OF THE SYMBOLIC SIMPLIFICATION FOR THE
CALCULATION OF ACCELERATIONS OF MULTIBODIES

Dmitry Vlasenko, Roland Kasper
“Institute of Mobile Systems (IMS), Otto-von-Guericke-University Magdeburg
Universitatsplatz 2, D-39016 Magdeburg, Germany
e-mails: Dmitri.Vlasenko@ovgu.de, Roland.Kasper@ovgu.de

KEYWORDS

Symbolic decomposition, multibody dynamics

ABSTRACT

This paper presents a method of simplification of
multibody dynamics equations by preprocessing based on
the symbolic decomposition and multiplication of sparse
matrices. The method was implemented in the Virtual
System Designer (VSD) software for the simulation of
dynamics of CAD systems. Simulation tests show that the
symbolical preprocessing greatly increases the numerical
efficiency of the simulation.

INTRODUCTION

Nowadays there are many of methods performing the
simulation of multibody systems. If simulated models are
described using absolute coordinates, the equations of
motion include large sparse matrices. Decompositions and
multiplications of the matrices are the most numerically
costly procedures in the simulation process.

The numerical efficiency of simulation methods can be
significantly reduced if the sparse structure of matrices is
taken into account. In the last years we developed a method
for symbolic simplification of equations of motion based on
preprocessing, which performs the object-oriented
multibodies with complex structures and redundant
constraints (Vlasenko and Kasper 2007:2). The symbolic
simplification of decompositions and multiplications of
matrices has several advantages in comparison with standard
sparse solvers:

e Sparse structure of matrices is used completely
without any run time overhead.

e The numerical operations with numerical elements of
matrices are performed already during the translation.

e Additional operations with arrays of indexes (like in
usual sparse solvers) are not needed.

In this article we show the results of the implementation of
the method for the calculation of accelerations of
multibodies. We developed in Maple a preprocessing
module, which performs the symbolical simplification, and
integrated it with our tool Virtual System Designer (VSD)
for the object-oriented simulation of dynamics of CAD
systems. Tests show that the integration of the preprocessing
module with VSD greatly reduces the simulation time and
the number of computations.

SYMBOLICAL SIMPLIFICATION OF THE
DECOMPOSITION OF MATRICES

Let us consider a multibody system, consisting of rigid
bodies, connected by holonomical constrains. The equations
of constraints can be written as:

g(q)=0 1)

where q is the vector of coordinates.
Differentiating this equation, we get the equations of
constraints on the velocity level:

G(q)v=0 2

where G is the constraint Jacobian matrix, v is the vector
of velocity variables.

Differentiating (1) twice, we obtain the equations of
constraints on the acceleration level:

G(q)v=u(q,v) 3
where
u=-G-v (4)

Combining (3) with the equations of motion in descriptor
form:

Mv +G(q)" & =f(q) 5)

we get the index-one formulation of the equations of motion
(Eich-Soellner and Flhrer 1998; von Schwerin 1999) which
can be used for the calculation of v,

=y (6)
M G(q)' [ij[f(q) J
G(q) 0 Iy u(q,v))

where f is the vector of external forces, M is the mass
matrix, A is the vector of Lagrange multipliers.

This linear system can be efficiently solved by sparse
solvers, exploiting a block-sparse structure of matrices M
and G (e.g. null space methods, range space methods) (von
Schwerin 1999; Lubich et al., 1995)

We developed an algorithm, based on the QR-
decomposition of matrices, which can be used for the
simulation of mechanical systems with complex structure,
including closed loops and redundant constraints. Let us
consider it more precisely.

From (2) we get the system of equations

© EUROSIS-ETI

v=M*(f-G'A) 8
GM'G"A=GM 'f —u 9)

Computing the Choleski decomposition of M=LL", we
obtain from (7) the matrix equation for A

ATAL=Db (10)
where

A=L"G’ (11)

b=GM™'f-u (12)

If the matrix A is linearly independent (e.g. all rows of the
Jacobian matrix G are independent), then, using the QR-

R
decomposition of A = Q(Oj , we can calculate the value of

A as
A=RIR")b (13)

However, in the case of redundant constraints G has
dependent rows! The presence of redundant constraints in
CAD models is not unusual. In many cases design engineers
develop CAD models, using more constraints than it is
needful from the mechanical point of view. The redesign of
CAD models and the elimination of redundant constraints by
engineer is very costly procedure.

From (11) follows that if G has dependent rows, then A
has dependent columns. Consider now the calculation of
solution of (10) in this case. Clearly, if A has dependent

columns then the product ATA is singular and the solution
of (10) is not unique. In our case we need only an arbitrary
solution with limited norm. Performing the QR-
decomposition with pivoting of A, we obtain (Golub and van
Loan 1996):
All=Q R; R, 14
Here Q is an orthogonal matrix, IT is a permutation and R,
is a non-singular and upper triangular (r, r) matrix, where
r=rank(A). Then the solution of (10) can be found using the
formula (Vlasenko and Kasper 2007:2)

A =TLR; (R 11D (15)

where I, is a part of the permutation matrix IT: II=(I1,, II,).
From (15) follows that we do not need to calculate the

matrix Q, butonly II;, R, . Substituting the value of A in

(8), we calculate the absolute accelerations v.

Since using absolute coordinates, the matrix A usually has
a sparse structure and includes both numerical and symbolic
elements, e.g. the elements that are constant during the
simulation and elements, depending on the coordinates of
bodies. Therefore, the QR-decomposition of A can be
optimized. We have developed a preprocessing module,
which symbolically simplifying the QR-decomposition of
matrices and for each decomposition generates a
corresponding C-code.

This approach has the advantages pointed out in
introduction. Generating C-code directly not only avoids

calculating with zero elements, but also allows to preprocess
all numerical parts of expressions. Indexing of matrices is
avoided completely as linear code is generated.

It is well-known that the numerical complexity of the QR-
decomposition depends on the order of columns. That is why

we decompose not the matrix A, but the matrix A = AIl
which is obtained from A by the reordering of columns.

We do not identify dependent rows in the matrix A on the

preprocessing level because some elements of A are not
constant. That is why we can get the situation when,
substituting in our C-procedure the numerical values of

elements of A on an arbitrary time step, we obtain the
matrix R; having zero elements on the main diagonal. We
propose the following algorithm of the solution of this
problem:
1. Using a C-procedure, generated by the
preprocessing module, we obtain from the

numerical value of the matrix A the upper
triangular matrix R, having zero elements on the
main diagonal.

2. We permutate rows and columns of R in order to
maximize the size of the non-singular upper
triangular submatrix Ry ; and to minimize the size
of the lower submatrix R; :

Ri1 Ry J (16)

P,RP, =(0 R,

where P, and P, are permutation matrices.
3. We perform the QR-decomposition of the

T
: U, U 11

submatrix Ry, =Q,| 1 2 T* |- Then the
' 0 0)n

matrix R; from (13) can be calculated as

R, = Ri1 Ry (17)
0 U

where lﬁil'z =Ry 51, ;. The matrix I, from (13) is
a combination of submatrices of I, I, .

DOUBLE INSULATOR CHAIN EXAMPLE

Consider a double insulator chain example (Hagedorn et
al. 1980; Lubich et al., 1995; Vlasenko and Kasper 2007:1),
shown in Figure 1. Each chain consists of insulators,
connected by revolute joints. The first end of each chain is
coupled with the triangular distance holder; the second is
coupled with the ground. The holder is connected with the
high voltage line, which is modeled as a force f;, acting on
the holder.

© EUROSIS-ETI

Figure 1. Double Insulator Chain Model

We modified the model, proposed by Hagedorn (Hagedorn
et al. 1980) and added the wind force f,=10N, acting on the
insulators and on the holder in the y-direction. Let m denote
the number of insulators in each chain. Figure 2 shows the
changes of the y-coordinate of the holder when m=8.

00025
0.002 4
0.00154
0.001 o

0.0005 o

o o [T=] 0’3 04 o5 0B

Figure 2. y-Coordinate of the Triangular Distance Holder

We simulated the dynamics of the example for different m,
using the preprocessing module and the standard dense
solver during the QR-decomposition of the matrix A. The
results of the simulation are summarized in Table 1.

Table 1 Comparison of Simulation Effort of Double
Insulator Chain Model

Chain Flops Flops (dense
length(m) (VSD) solver)
4 5899 24400

8 11651 151632

16 23158 1058896

From Table 1 follows that we get a linear increase of the
numerical operations in the case of the preprocessing module
implementation vs. a cubic increase in the case of the dense
solver implementation. This result corresponds to the linear
increase of the simulation time for sparse solvers during the
simulation of a one-chain insulator model.

INTEGRATION WITH VSD

Possibilities of the optimization of simulation

The theoretical results, shown in the previous section,
shows that the simbolical simplification of the
decomposition of matrices can significantly reduce the
number of numerical operations during the simulation.

Moreover, not only the procedure of the decomposition of
matrices can be simplified. If we consider precisely the
equations (4), (11) and (12), we can see that the matrices

LY, G, Mtand G are sparse. Therefore, the calculations
of the matrix A and of the vectors b and u need the
calculationss of products of sparse matrices. Taking into
account the sparsity of the matrices during the calculation of
the products, we can significantly improve the numerical
efficiency of the simulation.

Since the matrices G, G, etc. are sparse, we can write
them down in a compressed form, including only the
symbolical parts of matrices. The compressed form of
matrices can be calculated, using the following procedure.
Consider an arbitrary matrix K:

0 ko 5
K= k2,l k2y2 0
0 0 Kss

Then the dense form PK of the matrix K can be
calculated as union of rows of K, excluding all non-
symbolycal elements:

DK:=(k1,2 Kox Koo Ky3)

The use of the dense form of matrices reduces the number
of memory, needed for the simulation.

Preprocessing module

We developed in Maple a preprocessing module which
performs the symbolic optimisation of calculations. Starting
from the mechanical parameters of a simulated system (e.g.
masses of bodies, types and places of connections, etc.), the
module generates a set of optimised C-procedures, which are
then compiled in a .dll library. The library is called from
VSD during the simulation of the mechanical system.

The module generates the following procedures:

1. The constraint Jacobian matrix °G in a compressed
form as a function of coordinates q.

2. Thematrix A=L"'G" as a function of q and el

3. The product M s as a function of q and an
arbitrary vector s (we call this procedure during the
calculation of b from (12) and during the
calculation of v from (8))

4. The product Gs as a function of PG and an
arbitrary vector s (the procedure is called during the
calculation of b from (12))

5. The vector u=—G-v as a function of coordinates
q and velocities v.

6. The matrix R as a function of matrix A, where R is
an upper-triangular matrix, obtained by the QR-

R
decomposition of A: A = Q(OJ .

The functions, generated by the preprocessing module, are
much faster than the standard procedures of multiplications
and decompositions and need less RAM because they use the
sparse structure of matrices.

© EUROSIS-ETI

MANIPULATOR MODEL

We tested our preprocessing module, simulating the
dynamics of a CAD model of a spatial manipulator, shown
in Figure 3. Each stiff connection between bodies is defined
by three plane-to-plane joints like it is usually defined by
design engineers during the development of CAD models.
This leads to the redundancy of constraints, which should be
taken into account during the simulation of the manipulator.
The complete model includes 8 bodies connected by 3
revolute joints and by 12 plane-plane joints.

%%W\

Figure 3. Manipulator Model

The matrix A matrix from (10), corresponding to the
model, is shown in Figure 4, where symbolic elements are
colored black, zero elements are blank and numerical
elements are non-blank. Its length is 42 and the width is 51.
The use of sparse methods for the decomposition of A is
very effectively because its density is 17.6%. The QR-
decomposition of A using the preprocessing module needs
34916 flops, which is 83% less than the number of
operations needed for the decomposition of A using a
standard dense solver.

e

 F

Figure 4. The matrix A of the model

The simulation of the dynamics of the model is carried out
for the first 2 seconds using the Runge-Kutta integrator with
the fixed timestep of 0.01 seconds. The use of the .dll
library, generated by the preprocessing module, allows us to
perform the simulation in 0.52 seconds, which is 5.5 times
quicker than the simulation without preprocessing analysis
(here we show the time of the simulation of the unstabilized
model. In VSD is used also the second preprocessing module
for the stabilization of constraints in the projection methods,
but its description is very extensive and sophisticated and
will be considered in other articles). This result shows that

the use of the preprocessing module enables in future the
real-time simulation of complex multibody systems.

CONCLUSION

The method of symbolical simplification of decomposition
of sparse matrices can significantly increase the numerical
efficiency of the calculation of multibodies’ accelerations.
The proposed method can be used for the simulation of
multibodies with complex structure and redundant
constraints.

The method was tested during the simulation of double
chain examples. The tests results of the decomposition of
matrices shows linear increase of the numerical operations
using the preprocessing module vs. a cubic dependency of
the dense solver.

The preprocessing module, simplifying numerical
procedures with sparse matrices, was developed in Maple
and integrated with the simulation software VSD. The
results of the simulation of a CAD model of a manipulator
show the high efficiency of the method.

REFERENCES

Eich-Soellner, E., Fuhrer, C.: Numerical Methods in
Multibody Dynamics, B. G. Teubner, Stuttgart (1998).

Golub, G. H.; Charles van Loan, F.: Matrix Computations,
3rd ed., Johns Hopkins UP, 1996.

Hagedorn, P., Idelberger, H., Mocks, L: Dynamische
Vorgénge bei Lastumlagerung in Abspannketten von
Freileitungen. etz Archiv 2, p 109-119 (1980).

Lubich, Ch., Nowak, U., Pohle, U., Engstler, Ch.: MEXX -
Numerical software for the integration of constrained
mechanical multibody systems. Mech. Struct. Mach. 23,
p 473-495 (1995).

von Schwerin, Reinhold: Multibody System Simulation.
Numerical Methods, Algorithms and Software.
Springer, 1999

Vlasenko, D.; Kasper, R.; (2007): A New Software
Approach for the Simulation of Multibody Dynamics.
ASME Journal of Computational and Nonlinear
Dynamics, Volume 2, Issue 3, 2007, pp. 274-278.

Vlasenko, D.; Kasper, R. (2007): Sparse Matrix Method for
Component-Oriented Dynamic Simulation of
Multibodies in VSD Software. Proceedings of
Multibody Dynamics 2007 (ECCOMAS Thematic
Conference), Milan, Italy, June 25-28 June, 2007

BIOGRAPHY

Dmitry Vlasenko (born 1977) graduated from the
Novosibirsk State University, Russia with a B.A. in 1998
and from St. Petersburg State University, Russia with M.A.
in 19200. He obtained his PhD degree in Mechanical
Engineering from Otto-von-Guericke-University
Magdeburg, Germany in 2006. From 2006 he works as a
research engineer at University of Magdeburg, Institute of
Mobile Systems.

© EUROSIS-ETI

